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Abstract 

In most algorithms of direct methods, the variables are 
the normalized structure factors (SF) E n. An alternative 
set of variables is proposed which provides more 
flexibility for handling, in a single algorithm, phase 
relationships and direct-space constraints, as well as the 
complete set of diffraction data. This set of variables ~n 
consists of SF associated with a complex periodic 
function ~O(r) such that p ( r ) =  l iP(r)l 2. The pair of 
variables {E n, qtn}, called twin variables, play a crucial 
role in the subsequent theory. The phase relations are 
enhanced by using pairs of non-negative 'twin deter- 
minants' ' • {Dm, Din+ 1 }, D m is a classical Karle-Hauptman 
(K-H) determinant involving E and D~,+I is generated by 
bordering D m wi th  an  (m-+-1 ) th  r o w  and column 
containing ~P. The associated regression equation estab- 
lishes a relation between E and q/. Furthermore, a 
remarkable expression is obtained for the gradient of the 
phase given by the classical tangent formula, as well as 
for the gradients involved in the related formulae 
pertaining to the ~ set. The flexibility of the algorithm 
is illustrated by the ab initio transferring to the q; set of 
the a priori known information (such as the whole set of 
the observed moduli), before starting the sequential 
phase determination of the unknown phases. All 
constraints are included in a global minimization 
function. Analytical formulae are given for the gradient 
of this function with respect to the qJ set of variables. In 
the final result, the qJ set is simultaneously compatible in 
the least-squares sense with the whole set of observed SF 
and with various other constraints and phase relations. 
Application to two known structures permitted testing the 
different parts of the algorithm. 

I. Introduction and general scope 

In direct methods, the simultaneous use of a large 
number of phases in a single mathematical expression is 
a major subject of research. The introduction, in the very 
first stages of phase determination, of the complete set of 
observed structure-factor moduli is also a problem 
without an easy solution. Similar problems arise in the 
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course of phase extension by direct methods. In most 
existing algorithms, the unknown variables are the SF or, 
for fixed moduli, their phases. We propose in this paper 
an alternative set of variables which provide more 
flexibility in handling, in a single algorithm, phase 
relationships and direct-space constraints, as well as the 
complete set of diffraction data. In particular, novel 
mathematical expressions (~2.3-2.6) will allow the ab 
initio imprinting into the algorithm of a priori known 
information (~1.2, 3a, 6). This set of variables, called 
the q/set, is introduced in two ways: by using a Sayre- 
type squaring equation (Sayre, 1952) or by defining a 
modified Karle-Hauptman (K-H) determinant (Karle & 
Hauptman, 1950). 

1.1. The qJ set as elements of twin determinants 

It is classically known that the non-negative character 
of a complete set of K-H determinants is a necessary and 
sufficient condition for the associated scattering density 
to be non-negative. For point atoms with positive atomic 
scattering factors, their definition is 

D m --  det(Upq) >_ 0, 

where Upq = UH__Hq = En_nq/Eo is the unitary SF 
[equation (1.3)]. As an example taken from experimental 
diffraction data where the above K-H inequality does not 
hold, we mention neutron diffraction SF where the 
atomic scattering factor may be positive or negative as 
well. 

Even after introducing a distribution of point atoms 
with negative or non-real scattering factors, however, one 
could seek the construction of non-negative determinants 
based upon a different definition. Such a determinant has 
been proposed for 'isomorphous pairs' of X-ray and 
neutron diffraction SF, both associated with the same set 
of atomic coordinates and denoted, respectively, by E~  
and ~P~ [see equations 9-10 in Tsoucaris (1970b) for 
proper scaling of the SF]. For example, 

1 E~ ~ 
O~ = (E~)* 1 I//~_ H >_ O. (1.1) 

(~v~)* (!iVy_n)* 1 
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In these determinants, neutron SF ~ :  are the elements 
of the last row and column, whereas the elements of all 
other rows and columns are X-ray SF E~. It is this 
particular construction that restores the non-negative 
character of the determinants. 

We note that the phase dependence of D~ involves 
only the 'mixed type triplet invariants': 

ExR, ~" t ~  " a* (1.2) THK = - H  K \  K - H /  • 

The definition of the mixed X-ray/neutron determinants 
[(1.1)] involved the expression +g)/2, i.e. the square root 
of the normalized X-ray scattering factor gj >_ 0 derived 
from the experimental scattering factor fj [(1.3a)]. By 
analogy with the physical isomorphous X-ray/neutron SF 
pair (E~t R, qJ~), this mathematical formulation will now 
be transposed to the present purpose by considering an 
isomorphous pair of X-ray SF En, equation (1.3), and a 
novel set of SF q~a, equation (1.4), def'med as follows. 
For both E n and qJn, the atomic coordinates are identical; 
for ~n, the scattering factor ~ is a complex number with 
a modulus equal to the X-ray scattering factor +g)/2 but 
with an arbitrary phase taking any value between -n" and 
+Jr. It is to be noted that the physical anomalous- 
dispersion expressions involve such complex scattering 
factors but their phase is rather closer to 0. Hence, the 
theory of twin determinants also applies to anomalous 
dispersion. We write 

N 
En = ~ gj exp(2JriH • rj) (1.3) 

j=l 

with the usual definition for normalized SF: 

gy = 2 (1.3a) 

under the condition 

and 

N 
E g ~ = l  
j= l  

N 
qJn = (1/E~/2) ~ ~ exp(2zriH, rj) (1.4) 

j= l  

I~ l  2 = gj >__ 0,  (1.4a) 

where N is the number of atoms in the unit cell. The 
scaling of (1.4) is such that ~v are normalized SF, in the 
same sense as normalized E values [special case of (2.5)]: 

N 
(Iq, ol 2) = ~ [~12//E0 = 1. (1.4b) 

j= l  

It is important to emphasize that the phase of yj is not 
directly provided by experimental data, whereas its 
modulus is precisely given a priori from the known 

values gj, (1.4a). Clearly, the qJ set (1.4) is purposely 
designed as an alternative auxiliary set of primitive 
variables in the process of phase determination or phase 
extension. A prerequisite for their use is obtaining the 
explicit expressions linking the classical variables E to 
the new set of variables ~P [(1.6) and ~j2.3-2.6]. As a 
particular case, we can consider only real values 
YJ = +g)/2. Here also the signs can be provided by a 
random-number-generator subroutine. 

The mathematical formalism leading to the general 
non-negative determinant (1.5) is given in §2.1. The 
novel D'+1 will be obtained from a classical K-H 
determinant D,, by bordering it with an (m + 1)th row 
and column containing only ~P. With the usual notation 
Upq = Epq/E o and qJq given by (1.4): 

1 . • • U l m  

Uml 

p q  

. . °  1 

! 

D i n +  1 - -  

( ! / /1)* . . .  ( t ffq)* . . .  (!/~m)* 

t//1 

~ > o  

N 

(1.5) 

where the single index p stands for the vector Hp and 
the double index pq for H p - H q .  Note, however, 
that (~n_)* # qCn • 

The p~ir of 'iso~aorphous sets' E n and qJn of (1.3) and 
(1.4) will be called twin variables. Pairs of determinants 
involving twin variables, such a s  D m and D~,+I in (1.5), 
are called twin determinants. Further developments 
({}2.2) lead to a still different type of twin determinant 
where the qJ set is involved not only in the last row and 
column of D' but also in a novel definition of all m+l 
elements of D m. 

1.2. The ~v set of  variables and its self convolution 

Another way of introducing the qt set is a convolution- 
type equation: 

E n = ~ wnKq/~:(q/K_n)*, (1.6) 
K 

which arises, except for the weighting factor WHK, from 
Fourier transformation (FT) of the following modeliza- 
tion function p(r) for a positive electron-density function: 

laP(r)12 { E n = FC[p(r)] (1.7) p(r) 
~v a = FC[~p(r)], 

where FC stands for Fourier coefficient. 
Anticipating the results of ~3 and 4, we indicate that 

an advantage of the new set of variables is that it allows 
at any stage the whole set of the observed moduli to be 
incorporated into the phase-determining algorithm; this is 
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achieved by constraining the q.t set to fulfil the modulus 
part of (1.6), in the sense of least squares (LS), equation 
(4.3). This constraint is applied from the very beginning 
at the usual sequential determination of phases; the 
phase-determination process, carded on by varying the qJ 
set, is then confmed to that subset of ~P that satisfies the 
modulus constraints. 

A similar formalism has been proposed by Davies & 
RoUet (1976) for phase extension in the special case of 
real +pl/2. The present algorithm, in addition to the 
constraint (1.6), introduces several other direct-space or 
reciprocal-space constraints and provides a further 
strengthening of the phase relations with high-order 
determinants. Furthermore, the complex character of 
~(r) or ~ leads to the breakdown of Friedel's law in the 
q/ set and subsequently to doubling the number of 
variables within a given reciprocal sphere. These facts 
contribute to using the algorithm in the ab initio problem. 

As a first step in practical applications, we develop in 
~3  and 4 an algorithm mainly based on the convolution 
equation (1.6) and the results of ~2.3-2.6. Numerical 
results are given in §5 and a short discussion in §6. 

2. The theoretical foundation 

2.1. Twin determinants 

By analogy with the theory of the maximum- 
determinant method (MDM), we consider m + 1 vectors 
(f~ . . . . .  ~¢m, fCm+l) in Cv; this C-vector space is 
equipped with its orthonormal canonical basis 
{~i, i = 1 . . . .  ,N} [Tsoucaris, 1970a, equations (B.1)- 
(B.6)]. However, the scattering factors involved in the 
vector coordinates are replaced as follows: 

N 
fop -- (1/E 1/2) ~[~exp(2r r iHp.  rj)]~j (p = 1 . . . . .  m) 

j=-i 

(2.1) 

N 
Wm+ 1 : ~ ej. (2.2) 

j=l 

The elements of the principal minor Din, (1.5), are 
generated as scalar products: 

Ueq = (VelVq) = En_nq/E o. (2.3) 

The element at the (m + 1)th column and qth row is 

N 
qt n = (Vq]Vm+l) = (1/E~/2) ~ ~ exp(2zriHp, rj). 

j=l 

(2.4) 

The element (~/m+llVq) at the (m + 1)th row and qth 
column is the complex conjugate of (2.4). 

Standard mathematics then lead to the twin deter- 
minants and the inequality (1.5). The positive definite 

character of the underlying matrices is a necessary 
condition for the validity of the probability relations 
which will be studied in §§2.3-2.4. 

The last row and column elements in D~,+I do not 
obey the Friedel law, in contrast to the principal minor 
Dm. It follows that, in the mixed-type phase invariants 
involved in the expansion of D~,+I, the sum of the 
reciprocal vectors is not equal to 0, as it is for the 
classical invariants: 

Tpq : (![/Hp)*II/HqEHp_Hq. (2.4a) 

Note that whereas the triplets (1.2) or (2.4a) are real 
numbers, the triplet ~ a q"n EH n is not. Interestingly, 

-- p . q  p--. 

the expected value of the mixed tnpqlets (2.4a) is equal to 
1/E o, an expression that differs from that of the classical 
triplets E_HEr, EH_r, but similarly reduces to 1IN ~/2 for 
equal atoms. 

The elements of D m can be considered as correlation 
coefficients between q/ values; indeed, with the usual 
notation we have 

UHp_H q : (I~Hp_L(t//Hq_L)*)L. (2.5) 

This formula is obtained, by analogy with the Sayre- 
Hughes equation, by introducing (1.4) in the fight-hand 
member of (2.5) and allowing L to sweep all reciprocal 
space in the averaging process denoted by the bracket. 

It is to be noticed that, in equation (B.2) of Tsoucaris 
(1970a), the elements of D m were the SF Gpq associated 
with the squared structure p2; only the last row and 
column contained the usual E values, i.e. associated with 
the p structure. In contrast, all elements Upq of D m of 
(1.5), calculated by (2.5), are associated with the p 
structure itself. 

The behavior of the determinants (1.5) as a function of 
the order m is similar to that of the classical ones. Two 
ranges of m are of particular interest: (a) for values of m 
considerably less than N (order of magnitude less than 
N/3), the MDM rule applies; (b) for m > N, we have 
D~+ 1 = 0. The N-rank matrix theory (Navaza & Navaza, 
1992; Altomare, Giacovazzo, Guagliardi & Siliqi, 1994) 
also applies to D'+I and the lowest eigenvalue of D~+ 1 
tends to a minimum value for decreasing phase errors. 

2.2. Construction of twin determinants associated with 
matrices of given rank n 

Equation (2.5) strictly holds only for an infinite 
number of terms in the averaging operation. It suggests, 
however, for a limited number of terms n, a new way of 
defining matrices which are by construction (a) positive 
def'mite and (b) identically null for an order m higher than 
a given value n. The theory outlined below has not been 
used in the subsequent sections of this paper. 

We consider here not only a single last row and 
column of elements of the form (1.4), as in (1.5), but 
a set of n distinct reciprocal vectors H o - H  t, with 
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l = 1 . . . .  , n and p -- 1, . . . ,  m. The corresponding q/set, 
namely qJn n = qct compose an (m x n) rectangular p-- I P' 
matrix. This will be the basis of a novel definition of an 
n-dimensional vector space C n and of a set of m + 1 
vectors; the latter involves qJ values as coordinates 
instead of the classical atomic contributions in (2.1): 

Vp (1/Clp/2) E{ pi}ei (P = 1,. .  m) (2.6) 
i=1 

'W'l = et (l = 1 . . . . .  n), (2.7) 

where cp is a normalizing factor: 

- 2 .  

i=1 

We form the scalar products 

Cpq -- (~]tplgq) = [1/(CpCq) 1/2] ~ ~JHp_Hi(llJHq_Hi)* 
i=1 

(p, q -- 1 . . . .  m) (2.8/ 

(2.7a) 

< W ' p l V ~ )  = " " 1 / 2  - - WpdCp , (W~IVp) = (tPp,)*/CXp/2. (2.9) 

Thus, we obtain by construction an mth-order positive 
definite matrix C, (2.8), of maximum rank n, no matter 
what are the values (correct or not) of q/. The value of n 
is arbitrary, a priori unrelated to the number of atoms N; 
it plays, however, a role similar to that of N in classical 
K-H determinants. The behavior of D~ ) as a function 
of m is governed by the following 'steady decrease 
inequality' and 'n-rank equality" 

D(~ ) = det(Cpq) > 0 (2.10) 

D(mn) f > r~(n) for m < n - -  " ' r n + l  - -  . (2.10a) 
t = 0  f o r m  > n 

Clearly, apart from accidental coincidence, the maximum 
rank of the associated matrix C is equal to n. As in (1.5), 
the twin pair [D~ ), D~x]  I" is generated by bordering 
(2.10) with an (m + 1)th row and column chosen in the 
above rectangular matrix qJpt. 

A characteristic of the K-H determinant is that the 
value of an element Upq depends solely on the reciprocal- 
vector difference Hp-I-Iq; this property may be called 
stationarity, a usual term in signal theory. The counter- 
part of the limited number of terms in (2.8) is the lack of 
strict stationarity: the e l e m e n t s  Cpq are not bound to 
depend solely on the difference Hp-Hq, and C is not a 
T6plitz-type matrix. However, stationarity can constitute 
a new constraint to be fulfilled by an acceptable q~ set. In 
fact, this means that we will impose a new type of 

"f The upper index (n) must not be confused with the superscript n 
appearing in (1.1) for neutron diffraction. 

constraint: 

G q  "~" G ' q '  ( H p  - H q  - -  l l f t  - Hq,), ( 2 . 1 1 )  

which are to be treated by the LS algorithms developed 
in ~4. The interest of the determinants (2.10) will be 
enhanced if the value of n used in practical applications 
is equal to or smaller than N (maximum rank for K-H 
determinants) but still large enough to ensure an 
acceptable level of discrepancy in (2.11). Thus, the 
search for the unknown phases will be confined to a 
subspace of variables such that two fundamental 
conditions are automatically fulfilled, namely the posi- 
tive definiteness and the finite rank of matrices (2.10). 

2.3. The regression and the 'p~'  equation 

The positive definite character of the matrices of §2 
allows the extension of the probability expressions 
established for the classical E values to the qt set 
(Gaussian laws, MDM rule). We write here the qt-set 
regression equation: 

~¢(m+l)p  ~ -  --(1/Dpp) ~ Dpq~t(m+l)q, . (2.12) 
q = l  

where Dpq are inverse matrix elements arising from the 
principal minor Dm. In practice, (2.12) can be used to 
transfer the phase information of the usual SF E values 
towards the q / se t  of variables. It can be shown that the 
precision of the determination of new q/ values from 
(2.12) increases with increasing order m. A remarkable 
fact is that the regression equation becomes an exact 
equality for m -- N + 1 (de Rango, Tsoucaris & Zelwer, 
1974) with the N-rank determinants (1.5), and for 
m = n + 1 with the n-rank determinants (2.10). 

Furthermore, by expanding Dpq in power series and 
keeping only the first term, we obtain an approximation 
to (2.12), called the ' p ~  equation': 

phase of {tPX} "" phase of { ~ EnqtK_n }.  (2.13) 

It is worthwhile stressing that the counterpart in direct 
space of the last expression has a quite clear meaning: it 
is a sort of 3/2 power of p(r), the bracket in the right hand 
member being the FT of p~.  Therefore, it may not suffer 
to the same extent the well known problem of the Sayre 
equation for non-atomic resolution or unequal atoms. 
Equation (2.13) will routinely be used in the subsequent 
numerical calculations in order to extend the qt set as 
soon as the development of the phasing process of E 
values requires a larger ~ set to achieve the fulf'dment of 
the several constraints described in ~4. 

2.4. Mixed-type invariants and probability relations 

Generalizing the mixed triplets (2.4a), we note that the 
expansion of D '+ I  (1.5) contains high-order mixed-type 
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invariants of the form 

Tpq r . . . .  E p q E q r . . . E s t q / t ( ~ c p )  * , (2.14) 

TWIN VARIABLES AND DETERMINANTS IN DIRECT METHODS 

calculation yields 

Oq~a/Oq~a, = (IEa, En_n, I/IGnl) c o s  ¢J5 3 

where q/t = q/a,- 
From the non-negative character of D'+I,  one can 

foresee several other relations. In particular, the mixed- 
type triplet phase invariants I23 [see (2.4a)] are biased 
around the value 0: 

ff~3 --- - -~1 + O)K -- O)K-H, (2.15) 

where tpn and cox are the phases of E a and q/x, 
respectively. Furthermore, the associated probability law 
is given by the expression 

P(523) ~ exp(A' cos ~23), (2.16) 

where A' = 2[E_aq/tq/t_nl/Eo(1 -[Ual2). For equal 
atoms and large N, A' reduces to 21Eaq/tq/t_Hl/N I/2. 
We note that higher approximations for the above 
coefficient A' involving q/ can be adapted from the 
recent bibliography for classical triplets (see Altomare et 
al., 1994, and related questions in ~4.3-4.4). 

2.5. The calculation of a LS gradient with respect to the 
q~ set 

The actual problem involves tractable calculations of 
LS functions of the general form M(... q/L.. .)  devel- 
oped in ~4. The calculations are greatly based on the use 
of general expressions given below (Navaza, CasteUano 
& Tsoucaris, 1983). First we wish to clarify the notation 
for gradients and derivatives used throughout this paper. 
For n complex variables q/L, the function M: ~2n ___~ 
merely depends on the real variables AL, BL. The 
expression (grad M)~, L will represent the pair of partial 
derivatives with respect to the two real variables 
(~M/0A L, ~M/~)BL) and is written with the complex 
notation: 

(grad M)~,, -- OM/OA L + iOM/OB L !It L = A L d- i B  L, 

keeping in mind that the gradient component (grad M)~ L 
is a vector of ~2. This pair is conveniently obtained as 
the real and imaginary parts of the complex derivative of 
M with respect to (q/L)*: 

(grad M)¢, L = 20M/O(q/L)* 

S aM/aAL =2~[aM/a(~L)*] 
I, 0M/aBL = 2~[aM/a(q/L)*] 

(2.17) 

2.6. General expressions of phase derivatives 

We consider first a question pertaining to the pair of 
SF (E n, Ew) in the classical squaring equation (4.9): for 
a given small variation of the phase tpw of E a, involved 
in one contributor in the tangent formula, what is the 
resulting variation of the phase ¢ri of GH? The 

(2.18) 

t~3 : --t~H + q~l-l' + qT~l-H'" (2.18a) 

One could expect to observe that the derivative of the 
phase of a SF, with respect to the phase of another SF, is 
itself an origin-invariant quantity. The remarkable fact in 
the above expression is that this phase invariant involves 
solely, except for moduli, the cosine triplet invariants 
(2.18a). Similarly, the derivative of the phase q~i of E n in 
(1.6), with respect to the phase o~ of q/t, depends solely 
on the mixed-type cosine invariants: 

&Pn/0WL -- (Iq/Lq/L_HI/IEHI) COS ~23, (2.19) 

where ff~3 is given by (2.15). 
A related useful formula provides an answer to a 

similar question, pertaining to the twin variable pair 
(EH, q/L). It provides, via (2.17), the partial derivatives of 
the phase ¢Pn of E n with respect to the pair of variables 
A L and BL: 

(gradq~n)~,L = i(Enq/L_a -- E_aq/L+H)/IEH[ 2. (2.20) 

We note that the second term is obtained, with a sign 
inversion, from the first by replacing H by - H .  Thus, for 
summations comprising Friedel pairs such as (4.8), 
calculations with only one of the two terms lead to the 
correct result. 

A proof of (2.20) is obtained by applying (2.17) to the 
real function ~n = arg(En). We have: 

icon = ln(EH) -- In(lEnD (2.21) 

i0t/gH/0(I//L)* ---[~EHIO(q/L)*]IEH 

- {8[En(EH)*]'/2/8(q/L)*}/IErlI. (2.22) 

The complex derivatives of the right-hand member are 
immediately obtained from (1.6) where, for simplicity, 
the relative weighting factors have been omitted and the 
general scale factor has been incorporated in the q/set  
(see ~4.3c). 

3. The phase-extension algorithm 

The algorithm is based on alternately transferring the 
phase information between the twin variable sets of E 
and q/values. Each cycle of calculations comprises three 
steps. 

(a) Preliminary step. Transfer of information from E 
to q/. An initial set of phased SF E H is introduced in the 
following minimization function and kept constant, in 
moduli and phases, throughout this step: 

MSF = ~ lEa - ~ q/K(q/K_n)*l 2. (3.1) 
H K 
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Then the initial !/t values are varied until a set is found 
that minimizes (3.1). 

The convergence is greatly accelerated by using in the 
first cycles the 'pip' equation (2.13). Thus, the phase and 
modulus information conveyed by the initial set of E 
values is now transferred and capitalized into the set of !P 
values. Other data can be introduced as well at this first 
step before starting the sequential phase determination of 
the unknown phases in the steps (b) and (c) below. 
Among them, we mention the whole set or a subset of the 
observed SF moduli and empty or solvent regions in 
direct space. The significance of this important aspect is 
further considered in §6. 

(b) Phase extension. Transfer of information from 
to E. An additional set of non-phased E values will now 
be considered. The set of ~ values obtained in (a) is 
introduced in (1.6) in order to approximately determine 
the phases of this additional set of E values. We achieve, 
thus, an inverse transfer of information, i.e. from qJ to E. 

(c) Phase refinement via a set of minimization 
functions of both E and lit. The approximate phases of 
the additional set, along with the phases of the 'initial 
set', will be introduced as a starting point of iterative 
calculations in the refinement step. This is achieved via 
minimization functions described in §4. In these calcula- 
tions, the values of the gt set are further varied so as to 
best satisfy the corresponding constraints. During this 
variation, it is possible that the new values of the q/set 
no longer fit with sufficient precision the given SF of the 
initial set. This is taken care of by introducing the 
expression (3.1) of MSF into the global sum of 
minimization functions (4.1). 

After convergence in the phase-refinement step is 
reached, the last two steps are iterated with a new 
additional set of non-phased E values introduced in (b) at 
each new cycle. 

4. The M-minimization functions and their gradient 
components 

The sum of the minimization functions, with appropriate 
weights (and eventually negative sign for maximization 
functions), enters a global minimization function: 

[Vlglobal - -  I~SF + ~¢]mod "at- [Vlphase, (4.1) 

where MsF involves only phased SF given by (3.1) and 

Mphase = IVlclasstripl -+ [~mixtripl -'l- Mquarte t + . . . .  (4.2) 

4.1. The observed moduli amo d function 

This function is associated with the usual reliability R 
factor: 

Mmo d : ~ ( I E • I -  IE~bSl)2 (4.3) 
H 

and will provide an explicit example of the calculations. 

After writing (4.3) in the form 

Mmo d = Y~(E n - E~bS)(En - E~bs) * 
H 

with 

(4.3a) 

E~I b~ = IE~b~l exp(i~0n), 

we replace E•  and (E•)* in (4.3a) by their simplified 
expression: 

E H = y~ ~,¢K(~ttK_H) * --- ~ ~tK+H(!ffK)* (4.3b) 
K K 

0(En)*/O(q'L)* = ~'L-H 

and (4.3c) 

~E./a(q~L)* = ~L+n- 

Then, (2.17) yields 

(grad [qlmod)~L = 2 )-'~[(E n -- E~bS)~L_ [] 
[] 

+ (E n 17obs~* qj 1 (4.4) 
- -  L ' H  ] L + H J ,  

which, for H sweeping all Friedel pairs in reciprocal 
space, amounts to 

(grad Mmod)~, L = 4 }--~(E n - E~bS)~L_ n. (4.4a) 
H 

The last remark applies to all subsequent results 
involving Friedel pairs. 

4.2. Phase constraints associated with mixed-type phase 
invariants 

One of the simplest expressions suitable for analytical 
calculations of the gradient components is the following 
maximization function arising from a sum of D~ 
determinants (1.5): 

Mmixtripl = ~ E ~)][E-HI//K(t/'/K-H)*] 
H K 

= ~ ~ [E_nq~Kg'K_nl COS S23, (4.5) 
[] K 

where S23 is given by (2.15). It has been found in practice 
that the gradient of (4.5) with respect to the phases w e is 
most efficient for quick convergence. Thus, if the ,//-set 
moduli are kept constant throughout a single iteration, 
the gradient expression is greatly simplified. This 
gradient involves the remarkable expression (2.19): 

(grad Mmixtripl)a,, L : -- ~ E IE-Hq/K~H-KI sin ~"2 3 
[] K 

X (--0qgH/00) L 21- 3KL 21- ~(K-H)L), 

(4.6) 

where the Kronecker symbol 3KL = 0 if K # L and 
6KL = 1 if K = L. 
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4.3. Phase constraints associated with classical triplet 
invariants 

For Mtriplet, two different forms have been used in the 
present work. The first, denoted by MBessel, involves the 
information contained in the Cochran distribution 
(Cochran, 1955) and the connected formula for the 
expected cosine invariants (Hauptman, 1976): 

MBessel = ~ Y]E3[cosO3-II(A)/Io(A)] (4.7) 
H H' 

with the usual notations: E 3 ~,obs~obs~obs I, - -  L,_HL, H, L,H_ H, 
A = 2E3/N 1/2, O3 = -g i t  + ~0H, + 9H-H'; Io(A) and 
II(A ) are the modified Bessel functions. The final 
gradient expression is obtained by introducing (2.20) in 
each of the three terms arising from 003/0q/L: 

(grad MBessel), L = --2 ~ ~ E 3 [ c o s  O3 
H I, H' 

- I~(A)/Io(A)]} sin O3 [-(grad tPn)q,L 
, J  

+ (grad tpn,)q, L + (grad <Pn-H')q'L]" 

(4.8) 

The second minimization function, denoted by 
Mtangent, pertains to the usual agreement between a set 
of phases gon and the phases O n of the tangent formula, 
i.e. the phase of GH: 

GH = ~ En, En_H,. (4.9) 
H' 

A convenient way of avoiding the 2rr ambiguity and 
expressing explicitly this agreement is the following 
maximization function: 

Mtange.t = ~ WH COS(gH -- OH). (4.10) 
H 

The gradient of (4.10) is 

(grad Mmgcnt)~, L = - ~ w n sin(gri - On)[(grad 9H)*L 
H 

- (grad OH)q,,. ]. (4.11) 

The first term within square brackets is given by (2.20), 
while the second involves a summation over H', 
subsequent use of (2.18), and then (2.20). 

where E4 = IEI~En,EH, E_o~+W+H,)I and (I) 4 --" 

q~H "~ ~0H' "~ qgI'l" -~- ~-0 t+H'+H")"  
In the present calculations, we considered for the 

Bessel functions the simplified argument B = 4E4/N. 
Higher approximations are given by the above authors 
and by Giacovazzo (1976). The corresponding gradient is 

(grad Mquartet),L -- --2 y~. ~ ~-'~. E,[cos t~ 4 - -  II(B)/Io(B)] 
H H' H" 

× sin O4(grad O4),L. (4.13) 

The gradient in the right-hand member is given by (2.20). 

4.5. Direct-space constraints: solvent flattening, non- 
crystallographic symmetry and origin atom problem 

The solvent flattening, a procedure helpful in macro- 
molecules, can also be formulated as a q/-set minimiza- 
tion problem by writing the integral of p over the solvent 
region: 

Ms°iv = solvfP(r)dv= solvf[~HEHeXp(--2rriH'r)] dv" 

(4.14) 

The corresponding gradient is 

(grad Ms°lv)~'L = 4 f [ Y'~" ~L-n exp(2rciH " r)] H 

-- 4 ~ SHt//L_H, (4.15) 
n 

where S n is the FT at H of p over the solvent region. 
A usual problem in P1 and other low-symmetry space 

groups is the occurrence of a false solution with a heavy 
atom at the origin. This can be readily avoided in the 
present algorithm by introducing an appropriate Morigin 
minimization function; its gradient is obtained from the 
special case of (4.15) for r -- 0. 

Non-crystallographic symmetry can be introduced 
through additional terms in the global minimization 
expression (4.1). Their general form is similar to (4.14~ 
and (4.15), replacing p(r) by differences [ p ( r ) -  p(Ar)] 
at equivalent points related by a symmetry element A: 

Mno,,crssy m = f [ p ( r ) -  p(Ar)] 2 dv. (4.16) 
subunit 

4.4. Quartet refinement 

The minimal function of Hauptman has been intro- 
duced for the quartets (Hauptman, 1991; Hauptman, 
Velmurugan & Han, 1991; Miller et al., 1993; DeTitta, 
Weeks, Thuman, Miller & Hauptman, 1994; Weeks, 
DeTitta, Hauptman, Thuman & Miller, 1994): 

Mquartet --- ~ E ~--~E4[cos O4 - I I ( n ) / l o ( n ) ]  2, (4.12) 
H H' H" 

5. General scheme of  the twin determinant algorithm 
and numerical calculations 

All the above parts of the algorithm have been 
thoroughly tested with a Fortran program applied to the 
following known structures: (a) 4,5-bis(methylthio)-l,3- 
dithiol-2-ylium-bis(TCNQ), C29H15NsS 4 (Psycharis, 
Mentzafos & Terzis, unpublished data), and/3-CD-(Z)- 
7-tetradecemal (CD = cyclodextrin), C98H196097 (Mavri- 
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Table 1. Data, results and indications for the structures 
of (a) 4,5-bis(methylthio)- 1,3-dithiol-2-ylium-bis(TCNQ) 

and (b) fl-CD-(Z)-7-tetradecemal 

(a) (b) 
Space group P1 (Z = 1) P1 (Z = 1) 
Unit cell: a (.~)/ot(°) 8.029/96.8 15.645/101.7 

b (.~)/~ (o) 7.323/79.1 15.645/101.7 
c (A)/y (°) 13.565/I 14.8 15.935/103.6 

Number of unique data 2106 7073 
Number of non-H atoms in the 

unit cell 41 195 
Minimum E (E~in) 1.3 1.7 
Number of E values >Emi n 354 432 
Number of assigned phases 6 8 
Number of calculated phases 354 132 
Final phase error (o) 25 38 

dis & Papaioannou, 1995). Data information and the 
most import_ant results and indications are summarized in 
Table 1. The program includes the construction of a high- 
order K-H matrix from which several submatrices are 
extracted, appropriate to the various calculations. An 
interesting feature is the easy choice of an efficient ~ set 
among the matrix elements of the form qJL-np. 

In a first stage, we tested the ability of a qJ set of 
variables to faithfully reproduce a set of given E values, 
either in moduli only or in moduli and phase. Starting 
with totally arbitrary values of ~,  the usual crystal- 
lographic R factors corresponding, respectively, to MSF 
(3.1) and Mmo d (4.3) are computed at each cycle: 

and 

RSF = ~ IEn - E ~ b s l / ~  IE~bsl (5.1) 
H H 

emod = ~ IIEHI- IE~bSl l /~  IE~bsl- (5.2) 
H H 

They can reach values as low as 1% after a few tens of 
iterations by the simple gradient method. Similarly, for 
other minimization functions, the convergence is appre- 
ciated by the correponding R factors; for example, that 
corresponding to (4.7) is 

Rtriplet "- ~--~ [ )--~E3[cOs ~3 - n' 

The convergence for combined M functions has been 
tested in a few cases among the various combinations. 
The results of Table 1 have been achieved by using 
mainly three M functions of (3.1), (4.3) and (4.5). 

The above programs permit the investigation of the 
role of the various parameters involved in the phase 
determination. In each cycle of the g~-extension algo- 
rithm, an additional set of SF are introduced; their 
number varies from 1 to 50 depending on the particular 
values of various parameters controlling the selection of 

the new set. The minimum accepted value for the mixed 
triplet moduli of (2.4a), and that for the mixed invariants 
cos I23, (2.15), are among the most important parameters. 
We also have to consider: the minimum value of IE°bs I 
for introducing a reflection into the phasing process; the 
minimum values for the moduli of classical triplets and 
quartets introduced in the minimization functions (4.7) 
and (4.12); the minimum value of qJK, and others. 

An important feature of the algorithm is the very large 
range of the ratio "number of q~'s/number of E ' s " .  
Values as low as 1/5 still allow an acceptable fit for 
several M-minimization functions. With further algorith- 
mic and computational improvements, it is likely to reach 
even lower values of the above ratio. This leads to the 
important question of the minimum number of indepen- 
dent parameters presiding over the actual values of a 
given set of phased SF. A related question is the 
adequacy of a ~ set obeying or not the Friedel law (real 
or complex ~/, function, respectively). The tests carded 
out so far show that both cases can be considered with 
certain advantages for each of them. We emphasize the 
fact that, in all calculations presented in Table 1, the 
initial qJ set issues from the computer random-number- 
generator subroutine. 

Among other aspects illustrating the algorithmic 
flexibility, we mention the timing for successive 
transferring of the information between E and q.', i.e. 
the time of alternate transferring of information into the 
if' set and of subsequent retrieval to E through (1.6). We 
also mention the choice between sequential phase 
determination or global determination techniques. 

From the preliminary examination of various param- 
eters, it appears that their optimum value varies in the 
course of the phase-expansion process. In particular, 
several cut-off values are to be adjusted as a function of 
the number of already phased E values and of their 
figures of merit. Clearly, if the cut-off values are kept at 
too low levels at a later stage of phase expansion, we 
expect a general decrease of the quality of the new 
phases. On the other hand, if these values are too high, 
very few new phases will be obtained at each cycle and 
the total calculation time considerably increases. 

The smaller number of acceptable phases in the larger 
structure (b) is largely due to the lack in the present 
computing program of interactively controlled evolution 
of the various parameters; this will be the object of a 
forthcoming paper. Such problems have been closely 
studied and improved over the years for classical direct 
methods. The present method involves more parameters 
and more correlation between them. This arises from the 
nature of the method which is based on the simultaneous 
examination of the physical structure, expressed by the 
electron density p(r) and its companion structure, 
expressed by the auxiliary function (r(r). Thus, in adition 
to the usual parameters used in direct methods, we also 
have new parameters of a mixed type to be interactively 
optimized. 
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6. Discussion 

The methods and theoretical approaches which are 
related to or compared with the present algorithm can 
be divided in two categories. The first is based on 
reciprocal-space algorithms, while an underlying model 
in direct space provides an insight into the physical 
meaning. Prototypes for this category are the tangent 
formula and the Sayre equation, especially in the LS 
form (Sayre, 1974). Recently, a method called S A Y T A N  
(Debaerdemaeker, Tate & Woolfson, 1985, 1988) 
introduced a Sayre-type LS function to be minimized 
with respect to the phases of E. The minimal-functions 
method of Hauptman (1991) is closely related to the 
minimization functions (4.7) and (4.12). Similarly, the 
idea of simultaneously minimizing two functions, one for 
positive triplets and the other for negative quartets is also 
related to maximizing the first two phased terms of a K-H 
determinant by the MDM rule. We note, however, that 
the methods based upon a minimization with respect to 
the phases of E do not lead necessarily to a model 
compatible with the whole set of observed diffraction 
data and with the non-negative electron-density criterion. 

The methods of the second category are based on the 
idea of explicitly exploiting the structure information at 
all stages through an auxiliary function in direct space. In 
this category belongs the probability for an atomic 
presence 'MDM r(r)' function, which allows the trans- 
fer to direct space of the phase information conveyed 
by a high-order determinant (Mauguen, 1979; Knossow, 
de Rango, Mauguen, Sarrazin & Tsoucaris, 1977; de 
Rango et al., 1985). This function is defined as a Fourier 
series where the FC are elements of the inverse K-H 
matrix. The maximum-entropy method (MEM) also 
proceeds through the explicit calculation of a maxi- 
mum-entropy function in direct space, which exploits the 
available information (Collins, 1978; Bricogne, 1984; 
Navaza, 1985); its relationship with MDM has been 
investigated by Britten & Collins (1982), Narayan & 
Nityananda (1982) and Bricogne (1984). 

The present algorithm, although entirely built, in its 
present version, in reciprocal space, bears common 
features with both categories. Indeed, the squaring 
process in (1.7) underlies the reciprocal-space qt set of 
variables. One should note, however, that the weighting 
factor WnK introduced in (1.6) results in a loss of the 
convolution character of the right-hand expression. The 
direct-space exact equivalent of (1.6) would be a 
complicated expression involving ~(r) and the FT in 
six dimensions of wnK. The importance of the underlying 
model in direct space is also reflected in the convolution 
form of the gradient expressions, such as (4.4) and 
(4.15), which corresponds to multiplicative operations in 
direct space. We note the well known relation between 
difference Fourier and classical LS refinement. On the 
other hand, an essential feature of the present algorithm 
is associated with methods of the second category, the 

process of alternate storing and retrieval of information 
through the qJ set playing the role of an auxiliary discrete 
function. 

A main advantage of the present approach is the 
decoupling of the phase relations, such as (4.5)-(4.13), 
from the observed moduli constraint (4.3) and from the 
direct-space constraints (4.14)-(4.16). The observed 
moduli set, as well as the direct-space constraints at a 
given stage of calculations, can be considered as a priori  
information for the phase-determining process. The 
search aiming at the fulfilment of the phase relationships 
is then confined to the subset of q~ that already satisfies 
the above a priori  constraint. In particular, the algorithm 
allows a systematic use of the whole set of unobserved 
reflections within the observed sphere, which may play 
an important role by avoiding the introduction of a phase 
error at the early stages of the phase determination. 

The ability of the present algorithm to convey 
information other than LS constraints is illustrated by 
the possibility of an appropriate choice of the q~ set. 
Indeed, the number and location in reciprocal space of 
the chosen primitive variables qt K is arbitrary. This 
choice [i.e. lattice vectors, moduli and phases of the 
starting ~P set, real or complex nature of the function ~p, 
(1.7)] can be adapted to the information one wishes to 
emphasize and to the characteristics of the diffraction 
data. 

Two types of this choice will be briefly examined. The 
first, emphasizing the information pertaining to the 
observed diffraction data, suggests to select for the 
reciprocal vectors K of qt K those corresponding to the 
largest observed SF (IEl's). As a further step, one could 
take the values of [E °bs] as initial assignment for the 
moduli of the qt set. We recall, however, that this 
possibility concerns only the initial moduli of the qt set: 
starting from these values of the moduli and arbitrary 
phases, the qJ values are allowed to vary, in modulus and 
phase, so as to fulfil the minimization constraints. The 
second type, on the contrary, consists of totally 
decoupling ~ and E. For instance, part of the ~ set 
can be located outside the observed sphere. This amounts 
to modeling lower-resolution data with a higher-resolu- 
tion !P set and thus introducing a bias towards atomicity. 

The above considerations illustrate the flexibility 
offered by the use of the qJ set and by the novel phase 
gradient expressions developed in §2. 

The authors are indebted to Professor H. Hauptman 
and Dr J. Navaza for illuminating discussions. 
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Abstract 1. Introduction 

The scattering from crystals has two components, Bragg 
and diffuse. In the case of disordered crystalline 
materials, or those at high temperature, the latter 
contribution is considerable and contains a great deal 
of information about any static or thermal disorder in the 
system. However, interpretation of this diffuse scattering 
is in general difficult. A new and widely applicable 
technique for modelling single-crystal diffuse scattering 
has been developed, which is most useful for the study of 
disordered crystalline materials. The algorithm, based on 
the reverse Monte Carlo method, is described in detail, 
and the information that can be obtained using it is 
discussed with reference to a study on ice lh. 
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The reverse Monte Carlo (RMC) modelling technique, 
first developed by McGreevy & Pusztai (1988), enables 
detailed short-range structural information to be obtained 
from neutron, X-ray and extended X-ray absorption fine 
structure (EXAFS) measurements (McGreevy & Howe, 
1992). A wide variety of different systems has been 
studied, as diverse as expanded caesium near the critical 
point (Nield, Howe & McGreevy, 1991) and disordered 
crystalline solids (Nield, Keen, Hayes & McGreevy, 
1992, 1993). The latter group of materials was studied 
using powder neutron diffraction. There are many 
recently developed techniques for producing models of 
crystalline materials, including refinement using simu- 
lated annealing in conjunction with both molecular 
dynamics (Brtinger, Kuriyan & Karplus, 1987) and 
Monte Carlo methods (Newsam, Deem & Freeman, 
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